

AMENET dialogue: Climate Change and Governance: General Trends and African Countries

Climate-Smart Agriculture as a Low Carbon Tool in Africa

Samuel W. Anuga

Institute for Environmental Economics and World Trade (IUW), Germany

Outline

- Low carbon development: a bibliometric analyses (global perspective)
- Research Questions
- Materials and Methods
- Results
- CSA as a low carbon tool in Africa
- Conclusions and way forward

Introduction

• Low carbon development has its roots in the UNFCCC adopted in in Rio in 1992, which provides voluntary or obligatory GHG reduction targets (Wimbadi & Djalante, 2020).

 low-carbon development is a pattern of political and economic development that aims at achieving environmental sustainability, economic growth and societal transformation (Zhao et al., 2019).

• The concept of low-carbon development has recently attracted attention from various countries and researchers.

Research Questions

• How has low carbon development research advanced over the years?

 What are current research hotspots in low carbon development research?

Materials and Methods

- A bibliometric analyses examined the impact of low carbon development research using VOSviewer.
- Two decades of low carbon development data (2000-2021) from Web of Science
- Search strings and combinations:

"low carbon development" OR "carbon neutral" Or "zero carbon" OR "low emission development strategies" OR "low-carbon pathways" OR "low carbon pathways "OR "low carbon growth" OR "low-carbon growth"

 Evolutionary analyses, Citation analyses and keyword co-occurrence analyses.

Materials and Methods Cont..

• Search results link:

https://www.webofscience.com/wos/woscc/generalsummary?q=W3siZil6llRTliwidCl6llwibG93IGNhcmJvbiBkZXZlbG9wbWVudFwilE9S IFwiY2FyYm9uIG5ldXRyYWxcliBPciBcInplcm8gY2FyYm9uXClgT1lgXCJsb3cgZW1pc 3Npb24gZGV2ZWxvcG1lbnQgc3RyYXRlZ2llc1wilE9SIFwibG93LWNhcmJvbiBwYXRo d2F5c1wilCBPUiBcImxvdyBjYXJib24gcGF0aHdheXMgXCJPUiBcImxvdyBjYXJib24gZ 3Jvd3RoXClgT1lgXCJsb3ctY2FyYm9uIGdyb3d0aFwiIn0seyJiljoiQU5EliwiZil6llBZIiwi dCl6ljlwMDAtMjAyMSJ9LHsiYil6lkFORCIsImYiOiJBVSIsInQiOilifV0

• Total of 3,939 publications extracted. 2, 496 included in the final analyses

 Some publications dropped based on title, content and relevance to the study

Results

Origin of studies

Most of the studies are Low impact of low • from China, Germany and carbon development kenya Netherlands. research in Africa hungary ghana slovakia netherlands costa rica austria ukraine brazil germany peoples r china egypt india gatar taiwan pakistan nigeria VOSviewer

Density overlay of studies origin

Citation analyses

Most cited publications james (2012) Impact of publications wang (2016c) perego (2011) are from 2010-2017 based on number of anantharaj (2016) publications fraser (2011) frischmann (2013) yigitcanlar (2014) hel<mark>in (2013) do</mark>dds (2015) xu (2014) rogeli (2015b) zhang (2018b) bi (2011) brennan (2010) graves (2011) baykara (2018) agbor (2014) smith (2012) jiang (2017) gill (2010) tu (2014) Min. Citation=25 bhattacharya (2016) williams (2016) an (2015) santillan-jimenez (2012) ferraro (2012) shifa (2017) cuce (2014b) DSviewer

Climate-Smart Agriculture (CSA) a low carbon Tool in Africa

• CSA incorporates sustainable practices to increase agriculture productivity vis-à-vis protecting the environment and coping with climate change (Tong *et al.*, 2019; FAO, 2010).

Current narratives on the efficacy and potential of CSA in agriculture transformation have majorly focused on the two pillars (1; adaptation and 2; productivity (Sparrevik & Utstøl, 2020; Dunnett *et al.*, 2018)

Common narratives/storylines of CSA

Mitigation narrative	Conventional Agriculture	Climate-Smart Agriculture
Soil Organic Carbon (SOC)	- Leads to erosion of soil organic carbon (C) stocks through burning of crop residues, use of fossil-fuel and chemical fertilizers.	+ Prevents soil erosion and maintains cover crops. When practiced with trees, increases C sequestration and storage.
Agroforestry (Carbon Stock Changes)	- Forests are cleared or degraded for new agricultural lands and farm expansions.	+ Reduces forest degradation through improved practices and higher productivity.
Livestock Enteric Emissions (LEM)	- Poor diet management including quantity and quality increases CH _{4.}	+ Fertilizing pastures and reducing grazing period reduces emissions.
Livestock Manure (LMM)	-A Low percentage of manure managed; illegal disposal, no surface crust and liquid manure flushed into the environment.	+ Composting, improve manure storage (covering manure heaps, biogas).
Fertilization	-Increase soil fertility through synthetic fertilizers.	+ Increase soil fertility through organic fertilizers.

Source: Literature compilation (2020)

Inclusion and Exclusion Criteria

von Humboldt

Stiftung/Found

Results

- Out of the 20 studies, nine were conducted in Southern Africa; Zimbabwe (6 studies), Malawi (3 studies), Zambia (2 studies) and Mozambique (2 studies).
- Three were from Eastern Africa and one a comparative study for Eastern and Western African countries.
- Two studies were collaborative, analysing issues from the global perspective with empirical evidence from Africa.
- Others included sectional studies; tropics (1 study), arid regions (1 study), Sub-Saharan Africa (2 studies).

Outcome of Studies

Author (s), country/region	CSA options evaluated	Key findings
Paul <i>et al.</i> (2018) Rwanda	Improved livestock breed and feed	Relatively small increase in GHG emissions (50 kg CO ₂ e hh ⁻¹ yr ⁻¹), decreased emission intensity.
Bellarby <i>et al.</i> (2014) Kenya and Ethiopia	Organic Nitrogen (N) input	Residue addition contributed significant amounts of N to soil, lowering emissions than when N is supplied as synthetic fertilizer only
Ambaw <i>et al.</i> (2019) (Tanzania, Kanye & Uganda)	Agroforestry	Increased SOC stocks by 42–196% at the depth of 0-15 cm
Powlson <i>et al.</i> (2014) Global	No-till practice	Found an annual global rate of SOC accumulation of 0.17 Gt C
Thornton & Herrero (2010) Tropics	Livestock and pasture management	Improved pastures and intensification of ruminants diets reduced CH_4 and CO_2 emissions by 417 Mt CO_2 -eq (12%)
Robroeck <i>et al.</i> (2015) Sub-Sahara África	Integrated soil fertility management	showed a change of C content from 12.2 g C soil kg ⁻¹ to 13.3 g C soil kg ⁻¹ when fertilizers and organic inputs are combined as compared to exclusively fertilizers

Outcome of Studies cont..

Author (s), country/region	CSA options evaluated	Key findings
Brandt <i>et al.</i> (2019) Kenya	Improved forage quality and concentrate supplementation	reduced GHG emission intensity from 2.4 \pm 0.1 to 1.6 \pm 0.1 kg CO ₂ eq per kg milk
Ngwira <i>et al.</i> (2012) Malawi	Intercropping	Observed a 76% increase in SOC when maize was intercropped with legumes.
Mujuru <i>et al.</i> (2013) Zimbabwe	Rotational farming	Carbon increased in a maize- soybean rotation
O'Dell <i>et al.</i> (2015) Zimbabwe	Cover cropping	Winter wheat cover crop produced 257 g of C addition compared to 197 g of no cover crop
Abdalla <i>et al.</i> (2016) Arid regions	No-tillage	Observed that conventionally tilled soils emitted 21% more CO ₂ than untilled soils

Conclusions

• Limited experimental evidence exist on the GHG mitigation potential for some of the CSA alternatives including agroforestry, rotational farming, improved livestock breed and intensification of ruminants' diet.

• Progress on CSA pillar 3 in Africa is generally limited by a lack of the necessary analytical infrastructure to conduct the needed measurements.

• Low carbon development is fast growing and the agriculture sector in Africa presents ample opportunities to identify, up-scale and out-scale low carbon strategies.

Low Carbon Agriculture Paper

Current Research in Environmental Sustainability 2 (2020) 100015

Towards low carbon agriculture: Systematic-narratives of climate-smart agriculture mitigation potential in Africa

Samuel Weniga Anuga ^{a,*}, Ngonidzashe Chirinda ^b, Daniel Nukpezah ^a, Albert Ahenkan ^a, Nadine Andrieu ^c, Christopher Gordon ^a

^a University of Ghana, Ghana

^b CIAT, Mohammed vi polytechnic university, Morocco

^c CIRAD, CIAT, France

References

• Wimbadi, R. W., & Djalante, R. (2020). From decarbonization to low carbon development and transition: A systematic literature review of the conceptualization of moving toward net-zero carbon dioxide emission (1995–2019). *Journal of Cleaner Production, 256,* 120307.

 Zhao, Z. Y., Gao, L., & Zuo, J. (2019). How national policies facilitate low carbon city development: A China study. *Journal of Cleaner Production*, 234, 743-754.

Call for collaboration

• Low carbon development: a bibliometric analyses

Email: samuelanuga@rocketmail.com

